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A Hybrid Switched Reactive-Based Visual Servo
Control of 5-DOF Robot Manipulators for

Pick-and-Place Tasks
Chi-Yi Tsai, Ching-Chang Wong, Chia-Jun Yu, Chih-Cheng Liu, and Tsung-Yen Liu

Abstract—This paper addresses the problem of visual servo
control for a five-degree-of-freedom robot manipulator to perform
pick-and-place tasks. A new hybrid switched reactive-based visual
servo control structure, inspired from a sensing-and-reaction be-
havior without the inverse interaction matrix computing, is pro-
posed to handle this problem efficiently. The proposed structure is
similar to the logic-based approaches, but the requirements of the
fuzzy modeling and/or the fuzzy-rule base learning are omitted. To
achieve this, a novel hardware-aware reactive function approach
is presented to directly map an image position error vector to
a desired end-effector velocity vector under the consideration of
hardware limitations. This approach helps to simplify the im-
plementation of visual servo systems with improved reliability.
Moreover, the proposed control system is a hybrid switching con-
troller consisting of both image-based and position-based reactive
planning schemes, which allows improving the robustness and
effectiveness of the visual servo system. Experimental results vali-
date the performance of the proposed visual servo control method
in a realistic scenario setting.

Index Terms—Hardware-aware reactive function, pick-and-
place manipulation, reactive-based control, robot manipulator,
visual servo control.

I. INTRODUCTION

IN the past two decades, robot manipulators have been
widely applied in several industrial environments for au-

tonomous manipulation tasks. In order for the robot to ac-
complish a variety of industrial applications, pick-and-place
operation is one of the major requirements in autonomous robot
manipulation. Such a requirement carried out many studies on
robotic grasping control that traditionally can be divided into
geometrical-planning-based and sensory-based approaches [1].
However, the traditional robotic grasping control approaches
may fail due to uncertainties in either the end-effector pose
or the object pose [2]. To improve the robustness of robotic
grasping control system, vision sensor provides an effective
solution to deal with pose uncertainties as visual sensing offers
rich information on target object for feedback. This advantage
continues to gain increasing attention on the research of vision-
based grasping control in recent years. A generic vision-based
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grasping control is broadly composed of three subprocesses.
The first is object-of-interest extraction, which is an image
process function involving object foreground/background seg-
mentation, object detection, and object recognition. The second
is vision-based grasp planning, which consists of object pose
estimation, grasp point determination, and gripper motion plan-
ning. The last is vision-based pick-and-place control relying on
techniques from visual servo control. These three subprocesses
have been individually addressed in the literature, and this paper
focuses the discussion on the last subprocess.

Industrial robotic manipulators usually employ visual servo
control to autonomously grasp and manipulate various types
of objects of interest in a more robust manner [3]. Modern
visual servo control schemes can be classified into image-based,
position-based, and advanced approaches [4]–[6]. These visual
servoing schemes often require deriving a robot–target inter-
action matrix related between image features and robot kine-
matics. However, deriving the interaction matrix is not a trivial
problem, particularly for an uncalibrated visual servo system.
Moreover, the interaction matrix is related to the depth value of
each image feature point relative to the camera frame, which
is difficult to be measured when using a monocular vision
system. Therefore, many advanced visual servoing schemes
require employing an estimation process to estimate the depth
value of each visual feature or interaction matrix of current
camera–target configuration. This requirement leads to a more
demanding vision and estimation design for a visual servo
control system.

An alternative way to achieve robotic visual servo control
is inspired from the behavior of living animals; for instance,
human beings only see and grasp an object of interest without
precise numerical interaction dynamics and position informa-
tion. This biological inspiration leads to a completely different
approach to realize visual servoing with only vision informa-
tion [7]–[15]. In [7], Suh and Kim proposed a new type of
interaction matrix, in which each element was associated with
only the image features. A fuzzy controller with a supervised
learning capability was then proposed to approximate a non-
linear mapping between feature variation and camera motion
related to the new type of interaction matrix. The authors also
extended their work to robot manipulation control via a fuzzy-
membership-function-based neural network approximating the
nonlinear mapping they discovered [8]. Although this method
provides a good approximation on the mapping between feature
variation and camera motion, the visual servo controller still
requires computing an inverse of the approximate interac-
tion matrix to determine each joint angle command. To fully
avoid the computation of inverse interaction matrix, Sequeira
Gonçalves et al. employed fuzzy modeling techniques to obtain
an inverse model of the mapping between feature variations and
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joint velocities [9]. This approach provides an efficient way
to obtain the inverse interaction matrix online; however, only
an uncalibrated eye-to-hand visual servo system is addressed.
Recently, the authors in [10] have proposed a distributed fuzzy
proportional controller that adopts a Takagi–Sugeno (TS) fuzzy
model [16] to estimate the inverse interaction matrix of the
visual servo system. This method has been applied in an un-
calibrated eye-in-hand robotic manipulator to show the estima-
tion performance of the proposed TS fuzzy model. However,
training the proposed TS fuzzy model requires constructing
an analytical image-based visual servo controller to collect
training data for learning process. This requirement decreases
the applicability of the TS fuzzy modeling approach.

On the other hand, some researchers used fuzzy logic control
techniques to achieve visual servo control without comput-
ing the inverse interaction matrix. Giuseppe et al. proposed
a fuzzy reactive control scheme to imitate a sensing-and-
reaction behavior for real-time grasping control of a three-
degree-of-freedom (3-DOF) industrial manipulator [11]. Since
this approach uses a monocular vision system with eye-in-hand
structure, only grasping a spherical object of known size is
addressed. To achieve more flexible robot manipulation control,
Moreno-Armendariz and Yu proposed a fuzzy visual controller
combined with a stereo vision system [12]. The stereo vision
system first generates a desired 3-D end-effector position, and
the fuzzy controller then controls the robot manipulator reach-
ing the desired position. Recently, Bueno-López and Arteaga-
Pérez extended this work to a 3-D trajectory tracking control
scenario, but using a different stereo vision model [13]. Us-
ing fuzzy-logic-based approaches gains a benefit to avoid the
training process required in fuzzy-modeling-based approaches;
however, the fuzzy rules and membership functions of the fuzzy
controller are still built in a supervised way. Although there ex-
ist some adaptive fuzzy control techniques for self-tuning fuzzy
rules [14] or internal parameters of membership functions [15],
the fuzzy visual servo controller of a 6-DOF robot manipulator
usually requires designing at least three fuzzy controllers with
different fuzzy behaviors to control three joint angles of the
manipulator individually. Therefore, the design of self-tuning
algorithm for multiple fuzzy controllers will become difficult
when controlling more than three joint angles.

This paper describes the design, implementation, and veri-
fication of a practical visual servo control system for a 5-DOF
robot manipulator to handle pick-and-place tasks. The proposed
visual servoing scheme is also inspired from the sensing-
and-reaction behavior, but completely different to the fuzzy-
logic-based approaches. The proposed visual servo system is
a hybrid switching control architecture consisting of image-
and position-based visual servoing approaches, but it adopts
a reactive-based control strategy to calculate the end-effector
velocities using only vision information without inverse in-
teraction matrix computing, fuzzy modeling, and fuzzy-rule
base learning. The proposed visual reactive method is applied
in a straightforward manner to map an image position error
vector to a desired end-effector velocity vector. Each joint angle
of the robot manipulator is then calculated from the desired
end-effector positions via a conventional inverse kinematics
controller [17]. The contribution of this work is summarized
as follows.

1) A hybrid switched reactive-based visual servoing is
proposed to integrate image- and position-based visual
servoing schemes into a variable structure framework

without using interaction matrix, fuzzy modeling, or
fuzzy-rule base. The proposed controller uses image-
based visual servoing (IBVS) to grasp an object of
interest nearby the gripper and uses position-based vi-
sual servoing (PBVS) to manipulate the grasped object.
According to [5], IBVS is robust to errors in camera
calibration and image noise, but the camera motion may
follow a suboptimal Cartesian trajectory. By contrast,
PBVS allows the camera to follow theoretically an opti-
mal Cartesian trajectory. Therefore, the proposed hybrid
switched reactive-based visual servoing scheme is bene-
ficial to improving the robustness and effectiveness of the
visual servoing system.

2) As to IBVS, a new image-based object orientation estima-
tion is proposed to estimate the orientation of a geometric
polygon object, such as a cubic object, randomly placed
on a flat working table. This algorithm helps the robot
manipulator to accurately grasp a geometric polygon
object using vision information only.

3) A novel hardware-aware reactive function approach is
presented to directly map the image position or world
position errors to the desired end-effector velocities under
the consideration of hardware limitations, such as system
quantization uncertainties. This reactive-based approach
allows simplifying the design of visual servo systems
with improved reliability and applicability.

The remainder of this paper is organized as follows.
Section II describes the scenario under consideration in this
paper. Section III presents the design of the proposed image-
based object orientation estimation algorithm that provides nec-
essary information related to object orientation required in the
following reactive control process. The proposed visual servo
control approach is introduced in Section IV. Section V reports
several experimental results to validate the performance of
the developed visual servo control system. Finally, Section VI
concludes the contributions of this work.

II. SCENARIO DESCRIPTION

This section describes the scenario considered in this paper.
A 5-DOF robot manipulator aims to grasp a colored object and
place it into a box, which has two different shapes of holes
with different colors. The robot has to recognize the color and
shape of the object of interest and try to put it into one of the
boxes through a hole with the same color and shape. We first
present the experimental setup for this scenario, and the robot
manipulator is then introduced to perform pick-and-place tasks.

A. Experimental Setup

Fig. 1(a) shows the experimental setup in our scenario. As
aforementioned, the robot manipulator is set up in front of
a working table, where several color objects and four boxes
are placed for the robot to perform the pick-and-place task.
Fig. 1(b) illustrates the box used in the experiment. Each box
has two holes with different colors and shapes, i.e., a spherical
hole located at the inclined plane and a square one on the top
of the box. Fig. 1(c) shows two types of color objects used in
this scenario: the first one is a spherical-type object, and the
second one is a cubic-type object. Each type of objects has
four colors: red, green, blue, and yellow. Before performing
the picking task, the robot first has to recognize the type and
color of each object randomly placed on the table. To achieve
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Fig. 1. (a) Scenario under consideration. (b) Box used in this scenario. Each box has two holes with different colors and shapes. (c) Two types of color objects
used in this scenario.

Fig. 2. Setup of the two cameras used in the experiments. (a) Camera mounted
overhead the working table. (b) Camera mounted on the robot gripper.

this, a camera is mounted overhead [see Fig. 2(a)] to capture all
objects and boxes placed on the table. A color segmentation
algorithm and a support vector machine (SVM)-based shape
classifier [18] are then applied to extract and classify these
objects. After recognizing each object on the table, the robot
manipulator performs local object picking task using the other
camera mounted on its gripper [see Fig. 2(b)]. Note that the
gripper-mounted camera only observes local objects of interest
near the robot gripper and cannot observe the location of each
hole at the same time. In this situation, the overhead mounted
camera is able to provide the target location for the robot
accomplishing the visual pick-and-place task.

Fig. 3 shows the hardware of the 5-DOF robot manipulator
used in this study. The robot manipulator includes eight parts:
(a) a base joint, (b) a shoulder joint, (c) a lower arm, (d) an
elbow joint, (e) an upper arm, (f) a wrist joint, (g) a wrist
rotation joint, and (h) a parallel jaw gripper. For each joint of
the manipulator, a step motor with a gearbox is used as the
joint motor so that each joint angle of the robot can rotate
with a fixed degree when receiving a pulse signal from a
motor driver [19]. As to the design of motion control card, an
Altera DE0 development board [20] is employed to receive joint
angle commands from a high-level controller (i.e., the proposed
visual servo controller) and send control signals (a pulse train
[21]) of each joint angle to the corresponding motor driver,
which is able to transform the control signals into the pulse
signals to drive a step motor.

In the gripper design, a screw with positive and negative
threads is designed so that only one step motor is used for the
gripper to grasp the object. Moreover, the mechanism of the par-
allel jaw gripper is designed to allow the robot grasping differ-
ent types of objects, which helps to simplify the grasp planning
design (i.e., omitting the grasping-point detection process).

Fig. 3. Hardware of the 5-DOF robot manipulator used in the object pick-and-
place experiments.

B. System Framework

Fig. 4 shows the system framework of the proposed visual
servo control design, which is a hybrid switching architecture
consisting of an image-based reactive planning unit, a position-
based reactive planning unit, and an inverse kinematics con-
troller. As mentioned in the previous subsection, the system
requires two cameras to accomplish the object pick-and-place
task that contains three stages. In the first stage, the overhead-
mounted camera estimates the target center position in world
coordinate to assist the position-based reactive planning pro-
cess. The camera first captures the image of whole view of
the table, and a color-based image segmentation algorithm is
then applied to extract all color objects in the global observed
image. Next, an SVM-based shape classifier is employed to
classify all extracted color objects into four types of shape:
spherical, cubic, spherical hole, and square hole. Based on these
classified results, a coordinate conversion approach based on
the conventional camera calibration techniques is adopted to
convert the center position of all spherical-hole and square-
hole objects from image coordinate to world coordinate. The
converted coordinates will be used as the desired end-effector
positions in world coordinate for the robot to put a grasped
object. Moreover, the orientation of each square-hole is also
estimated via an image-based object orientation estimation
algorithm, which will be presented in Section III.

In the second stage, the gripper-mounted camera observes
local objects near the gripper and provides their center positions
in image coordinate to assist the image-based reactive plan-
ning process. The same color-based image segmentation and
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Fig. 4. System framework of the proposed visual servo control approach.

SVM-based shape classification processes used in the first stage
are also employed in this stage to extract and classify all color
objects in the local observed image. If one or more cubic
objects are detected, the orientation of each cubic object is then
estimated by using the proposed image-based object orientation
estimation algorithm. Next, the proposed image-based reactive
planning process determines the desired end-effector pose in
world coordinate according to the difference between the refer-
ence and observed object center positions in image coordinate
and the orientation information if grasping a cubic object.

In the final stage, two different control strategies, i.e., IBVS
and PBVS, are used for picking and placing objects, respec-
tively. The robot first performs IBVS: the inverse kinematics
controller selects the desired end-effector pose generated from
the image-based reactive planning to pick a local object of
interest. When the robot picked the object, it then switches
to PBVS: the inverse kinematics controller selects the desired
end-effector pose generated from the position-based reactive
planning to place the picked object into a corresponding hole
with the same color and shape. The details of the proposed
hybrid switched reactive-based visual servo controller will be
presented in Section IV.

C. Available Assumptions

Since the proposed system is based entirely upon visual-
sensing data, some assumptions about the cameras should be
given. Based on the experimental setup discussed above, the
following assumptions are noted with respect to the cameras.
(A1) The optical axis of both cameras is perpendicular to the

working table. To estimate the orientation of both cubic
and square-hole objects from the visual information, it
is necessary that the camera optical axis is perpendicular
to the plane where both objects lie. Since both cameras
are fixed mounted on the steel stand and the end-effector,
respectively, this assumption is achievable by designing
a perpendicular camera steady on the steel stand for the

overhead-mounted camera and maintaining the pose of the
end-effector perpendicular to the plane for the gripper-
mounted camera.

(A2) The focal lengths of both cameras are fixed during visual
pick-and-place task. This assumption can be achieved by
disabling the autofocus function for each camera.

III. IMAGE-BASED OBJECT ORIENTATION ESTIMATION

ALGORITHM

As mentioned in the previous section, to put a cubic ob-
ject passing through a square hole, the robot first needs to
estimate the orientation of the object and then turns it to the
same orientation as the hole. Provided Assumption (A1), a
well-known algorithm relying only upon visual information
to achieve this purpose is based on the image moments [22].
Fig. 5(a) illustrates the orientation of a cubic object defined
in this study (the angle θc in the figure). According to [22],
the image-moments-based approach estimates the angle θc by
the orientation of an equivalent ellipse with the same two-
order centered moments as the object. This approach works
well for an arbitrary object; however, it may fail to estimate the
orientation of a regular polygon object (i.e., the cubic object
considered here) since the corresponding equivalent ellipse is
close to a circle. This problem highlights the importance of
orientation estimation problem for the regular polygon objects.
This section hence presents a novel image-based object ori-
entation estimation algorithm that efficiently and accurately
estimates the orientation of a geometric polygon object from
a segmented image.

Let h be the height of an image patch containing a single cu-
bic object. We first consider a boundary-point set ΩB = {pB

1 ,

pB
2 , . . . ,p

B
m}, where pB

j = [uB
j (h− 1)− vBj ]

T
is associated

with the boundary pixel [uB
j vBj ]

T
for j = 1 ∼ m, of the cubic

object in the image patch. Note that each boundary point
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Fig. 5. Illustration of definitions used in this study. (a) and (b) Orientation and
boundary-point set of a cubic object, respectively. Here, each boundary point
pBi takes the point (0, h− 1) as the origin, not the origin of image patch.

Fig. 6. Concept of the proposed orientation estimation method. (a) Projection-
point set Ωp(θ) associated with a given unit vector nθ and a boundary-point
set ΩB . (b) Evaluation of the positive real-valued function defined in (3).

pB
j can be seen as a 2-D vector taking the point (0, h− 1)

as the origin [see Fig. 5(b)]. Next, let nθ be a unit vector
parameterized by a given angle θ such that

nθ = [cos θ sin θ]T . (1)

Based on (1), we define a projection-point set Ωp(θ) associated
with a given unit vector nθ and a boundary-point set ΩB

such that

Ωp(θ) = {pTnθ : p ∈ ΩB} (2)

which is a real inner product space defined by the projection of
the boundary-point set ΩB onto the unit vector nθ, as shown
in Fig. 6(a). Since the boundary-point set is bounded without
loss of generality, the projection-point set is also bounded and
closed so that Ωp(θ) ∈ [Ωmin

p (θ),Ωmax
p (θ)], where Ωmin

p (θ) and
Ωmax

p (θ) are the minimum and maximum values of the set
Ωp(θ), respectively. Based on this observation, a positive real-
valued function can be then defined as

d(θ) = Ωmax
p (θ)− Ωmin

p (θ) > 0 (3)

which, generally, is a nonunimodal function with two local min-
imum points for −90◦ ≤ θ ≤ 90◦, as shown in Fig. 6(b). Using
the function (3) allows us to solve the orientation estimation
problem via a 1-D minimization (or line search) process

θ̂ = argmin
θ∈[θl,θu]

d(θ) (4)

where [θl, θu] is a closed interval guaranteeing that
d(θ)|θ∈[θl,θu] is unimodal. The interval [θl, θu] can be
determined through an initial bracketing process [23] that
searches an initial interval to bracket the first minimum point
[see Fig. 6(b)]. After initial bracketing process, an interval

reducing method, such as golden section search or Fibonacci
search [24], is then employed to find the optimal orientation
estimate θ̂. Finally, the orientation of the cubic object is
computed by the following modification rule:

θc =

⎧⎨
⎩

θ̂, if |θ̂| ≤ 45

θ̂ − 90, if |θ̂| > 45 and θ̂ > 0

θ̂ + 90, otherwise

(5)

where the cubic orientation θc satisfies condition |θc| ≤ 45◦

in the case of a cubic object. Note that the proposed image-
based object orientation estimation method can be extended to
cover other geometric objects. For instance, in the case of a
rectangle object, its orientation, which is denoted by θr, can be
computed via (4) without the modification rule (5) since it has a
condition |θr| ≤ 90◦. Therefore, the proposed method provides
an efficient way to estimate the orientation of a geometric object
from image directly. The accuracy of the estimation results will
be evaluated in the experiment.

IV. HYBRID SWITCHED REACTIVE-BASED VISUAL

SERVOING APPROACH

Here, a reactive-based visual servo controller is developed to
guide the robot manipulator toward a target object using only
vision information. Although fuzzy control techniques have
shown a feasible way to implement visual servoing without
interaction matrix computing, most of the current visual fuzzy
controllers require using membership functions to map system
inputs into fuzzy sets and obtain control velocities from fuzzy
domain [7]–[15]. However, selecting suitable parameters for a
set of membership functions is not an easy task, particularly
for design of a 5-DOF visual servo controller. This problem
motivates us to develop a new method that directly maps system
inputs to control outputs without fuzzification and defuzzifi-
cation processes. To achieve this, a hybrid switched reactive-
based visual servoing approach is proposed. Fig. 7 shows its
block diagram. It consists of an image-based reactive planning
unit, a position-based reactive planning unit, and an inverse
kinematics controller.

A typical objective of visual servoing is to smoothly move
the end-effector toward a desired pose while preventing control
velocities from exceeding some prespecified constraints. To
satisfy this, a smoothly increasing and bounded-input-bounded-
output (BIBO) reactive function is applied to directly map
vision information to the desired end-effector velocities. In this
paper, a typical S-function defined as

fs
r (e) =

{
smax

2

{
cos

[
π
(

e
emax

− 1
)]

+ 1
}
, 0 ≤ e ≤ emax

smax, e > emax
(6)

is taken as a reactive function since it is a BIBO function
with bounded derivative 0 ≤ dfs

r (e)/de ≤ 0.5π(smax/emax)
for every e ∈ [0, emax]. However, the disturbances caused by
hardware limitations, such as velocity quantization errors [25],
degrade the regulation performance of the controller, leading
to a nonzero steady-state error. To overcome such disturbances,
a reactive function using a minimum constant speed value is
applied to reduce the nonzero steady-state error caused by
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Fig. 7. Block diagram of the proposed hybrid switched reactive-based visual servoing approach.

hardware limitations. Taking the S-function (6) as an example,
the corresponding hardware-aware S-function can be given by

f̄s
r (e)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, 0 ≤ e ≤ ε

smin ε < e ≤ emin
(smax−smin)

2

×
{
cos

[
π
(

e−emin

emax−emin
−1

)]
+1
}
+smin, emin<e≤emax

smax e > emax
(7)

where emin is a positive constant depending on the magnitude of
system steady-state error. The reactive function described by (7)
is taken as the hardware-aware reactive function. Suppose that
a system suffers from velocity-quantization disturbances and
truncates velocity command to zero if the speed value is smaller
than 2, for instance. In this case, as shown in Fig. 8(a), the ideal
reactive function (6) may cause a nonzero steady-state error δ
due to the velocity quantization error. To overcome this issue,
as illustrated in Fig. 8(b), we set emin > δ (for instance, emin =
20) and the corresponding output smin = 2 (the minimum valid
speed value in this case). Then, the proposed hardware-aware
reactive function (7) can efficiently reduce the system steady-
state error as the output remains valid until the input error value
is smaller than the presetting small constant ε.

In Fig. 7, three hardware-aware reactive functions, which are
denoted by f̄s

ri for i = 1 ∼ 3, are employed in the design to

calculate the desired motion and angular velocities of the end-
effector. Let Xi

ref ∈ �2 and Xi
o ∈ �2 denote the reference and

object center positions in image coordinate, respectively, and
Xw

t ∈ �3 and Xw
e ∈ �3 denote the target center and current

end-effector positions in world coordinate, respectively. To find
a velocity vector from an input error vector, the desired motion
and angular velocities of the end-effector (denoted by Vw

d and
ωw
d ) are then given by

Vw
d [k] =

⎧⎪⎪⎨
⎪⎪⎩

M (θwe )
ei[k]

‖ei[k]‖ f̄
s
r1

(∥∥ei[k]∥∥) , for image-based
reaction

ew[k]
‖ew[k]‖ f̄

s
r2 (‖ew[k]‖) , for position-based

reaction
(8)

ωw
d [k] =

ewθ [k]

|ewθ [k]|
f̄s
r3 (|ewθ [k]|) (9)

where ei[k] = Xi
ref −Xi

o[k] is the image position error vector,
and ew[k] = Xw

t −Xw
e [k] is the world position error vector.

ewθ [k] denotes the end-effector orientation error in world coor-
dinate and is defined as

ewθ [k] =

{
θwc [k]− θwref , for image-based reaction
θws − θwe [k], for position-based reaction

where θwc [k] and θwref are the current estimated and reference cu-
bic object orientation angles, respectively. θwe [k] is the current
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Fig. 8. Comparison of the ideal and hardware-aware reactive functions.
(a) Ideal S-function defined in (6). (b) Hardware-aware S-function defined
in (7).

end-effector orientation angle, and θws is the estimated square-
hole orientation angle (obtained from the proposed orientation
estimation algorithm in Section III). In (8), the matrix M(θwe ) ∈
�3×2 is a coordinate transformation matrix associated with the
current end-effector orientation such that

M (θwe ) =

⎡
⎣ sin θwe − cos θwe
− cos θwe − sin θwe

0 0

⎤
⎦

which transforms a 2-D reactive velocity vector (obtained from
ei[k]) to a 3-D planar velocity vector with respect to the world
coordinate frame. Next, the desired end-effector position and
orientation, which are denoted by Xw

d and θwd , respectively, can
be determined according to (8) and (9) such that

Xw
d [k] = Xw

e [k] + ΔXw
d [k] θwd [k] = θwe [k] + Δθwd [k] (10)

where the increments ΔXw
d [k] and Δθwd [k] are given by

ΔXw
d [k] = TsV

w
d [k] and Δθwd [k] = Tsω

w
d [k] associated with

a constant system sampling time Ts.
To derive the forward kinematics equation, the joint coor-

dinate frames based on the Denavit–Hartenberg (D–H) con-
vention [17] are shown in Fig. 9. According to the D–H link

Fig. 9. D–H coordinate frame assignment for the 5-DOF robot manipulator
used in this study.

TABLE I
D–H LINK PARAMETERS FOR THE ROBOT MANIPULATOR

parameters listed in Table I, the end-effector pose with respect
to each joint angle can be obtained by chain multiplying five
link transformation matrices such that

T0
5 =

5∏
i=1

Ai−1
i =

[
R0

5 X0
5

0T
3 1

]
(11)

where X0
5 ∈ �3×1 and R0

5 ∈ �3×3 denote the position and
orientation of the end-effector in the base coordinate frame,
respectively; and 03 ∈ �3×1 is a three-by-one zero vector. The
symbol Ai−1

i , for i = 1 ∼ 5, denotes a general homogeneous
link transformation matrix relating the ith coordinate frame to
the (i− 1)th coordinate frame.

Moreover, recalling Assumption (A1) previously described
in Section II-C, the robot has to maintain the pose of the end-
effector perpendicular to the plane. This requirement can be
achieved by assigning a desired pitch angle, which is denoted
by θpd, of the spherical wrist [see joint 4 in Fig. 10(b)] to be
a fixed right angle. That is, the desired value of θpd is fixed
as −90◦ in order to satisfy Assumption (A1). Finally, pack-
ing the desired end-effector position, gripper orientation, and
pitch angle forms a desired end-effector pose vector Pw

d [k] =

[(Xw
d [k])

T θwd [k] θ
p
d]

T ∈ �5×1, which would be used for the
following inverse kinematics controller.

Consider the 5-DOF robot manipulator illustrated in
Fig. 10(a) with a desired end-effector pose vector Pw

d [k]. It is
clear from the manipulator configuration that the desired joint
angle θd1 can be obtained from the desired position of the end-
effector such that

θd1 [k] = atan2 (Yd[k], Xd[k]) (12)

where the function atan2(y, x) is a four-quadrant arctangent
function returning tan−1(y/x) with a proper quadrant [26].
To find the joint angles θ2 ∼ θ4 for the 5-DOF manipula-
tor, we consider joints 2–4 of the manipulator as a 3-DOF
planar manipulator [see Fig. 10(b)]. Let (X ′

d[k], Z
′
d[k]) and

(X ′
c[k], Z

′
c[k]) denote the desired end-effector position and the
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Fig. 10. Configuration of the 5-DOF robot manipulator considered in this study. (a) Manipulator configuration with a spherical wrist. (b) Projection onto the
plane formed by links 2 and 3.

Fig. 11. Three image patterns with orientation 0◦ used in the experiment of
orientation estimation.

wrist-center position, respectively, projecting onto the X ′−Z ′

plane such that[
X ′

d[k]

Z ′
d[k]

]
=

[√
X2

d [k] + Y 2
d [k]

Zd[k]− d1

]
(13)

and [
X ′

c[k]

Z ′
c[k]

]
=

[
X ′

d[k]− d2 cos θ
p
d

Z ′
d[k]− d2 sin θ

p
d

]
(14)

where d1 and d2 are the link offsets of the first and last links,
respectively. Based on the configuration shown in Fig. 10(b),
the solution of the desired joint angle θd2 ∼ θd5 can be found
with a geometric method so that

θd2 [k] =φ[k] + ψ[k] (15)

θd3 [k] = sign (θ3[k]) · cos−1 X ′2
c [k] + Z ′2

c [k]− a21 − a22
2a1a2

, (16)

θd4 [k] = θdp − θd2 [k]− θd3 [k] (17)

θd5 [k] = θwd [k]− θd1 [k] (18)

where a1 and a2 are the relation link lengths of the second and
third links, respectively; φ[k] = atan2(Z ′

c[k], X
′
c[k]); ψ[k] =

−sign(θ3[k]) · atan2(a2 sin θ3[k], a1 + a2 cos θ3[k]); and
sign(x) = x/|x| is the sign function of a real variable x.
Therefore, expressions (12)–(18) provide a closed-form
solution to generate the joint angle commands for object
picking and placing with a 5-DOF robot manipulator. The
performance of the proposed visual servoing scheme is to be
validated in the following experimental section.

Remark 1: Since a switching between the IBVS and PBVS
approaches may arise some stability problems of the hybrid
switched system, the existing hybrid switched visual servo
methods usually require adopting a hybrid switching strategy
to achieve stability in both control modes simultaneously [27],

[28]. In this paper, a simple task-dependent switching strategy
is used to switch the desired end-effector pose for the inverse
kinematic controller. That is, the switching of the reference
pose only occurs when the current task is finished and the
robot is stationary. This design helps to avoid side effect of
the switching operation on the system stability. Please refer to
[29] for more details about the switching strategy used in the
proposed hybrid switched controller.

Remark 2: In the current design, the depth Zd is assigned as
one of four constant depth values, i.e., [ZMove

d ZPick
d ZPlaceBall

d

ZPlaceCube
d ], depending on the current task. That is, we divide

the pick-and-place task into four subtasks: the moving task,
the picking task, the placing-ball task, and the placing-cube
task. The motion planning unit then assigns Zd[k] = ZMove

d

for moving task, Zd[k] = ZPick
d for picking task, etc. The four

constant depth values are determined depending on the appli-
cation. Here, we use [ZMove

d ZPick
d ZPlaceBall

d ZPlaceCube
d ] =

[30 0 27 35].

V. EXPERIMENTAL RESULTS

The proposed hybrid switched reactive-based visual servo
controller has been implemented on the 5-DOF robot manip-
ulator described in Section II-A. The following experiments
consist of two parts to validate the performance of the proposed
image-based object orientation estimation and hybrid switched
reactive-based visual servoing approaches.

A. Orientation Estimation of Geometric Objects Using the
Proposed Estimation Algorithm

To evaluate the performance of the proposed image-based
object orientation estimation algorithm, we first created three
test patterns (a nonregular hexagon, a regular square, and
a regular octagon), as shown in Fig. 11. The ground truth
data were then generated by rotating the original image pat-
terns to some specific degrees around their centers. This
can be easily achieved using imrotate function in MATLAB.
Next, the proposed estimation algorithm and the conventional
image-moments-based approach [22] were applied to esti-
mate the current orientation of the rotated image patterns
in degree. The results of each test pattern are shown in
Tables II–IV, respectively, in which the absolute error is defined
as Absolute Error = |Estimated Result − Ground Truth|.

Observing Tables II–IV shows that the image-moments-
based approach can acquire accurate estimation results for the
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TABLE II
ORIENTATION ESTIMATION RESULTS OF THE COMPARED AND PROPOSED METHODS FOR A HEXAGON OBJECT

TABLE III
ORIENTATION ESTIMATION RESULTS OF THE COMPARED AND PROPOSED METHODS FOR A CUBIC OBJECT

TABLE IV
ORIENTATION ESTIMATION RESULTS OF THE COMPARED AND PROPOSED METHODS FOR AN OCTAGON OBJECT

nonregular hexagon pattern, but fails to estimate the orienta-
tion of the regular square and octagon patterns (the reason is
mentioned at the beginning of Section III). By contrast, the
proposed algorithm works well for both nonregular and regular
geometric patterns. The absolute error of the estimation is less
than about 0.35◦, which is enough to satisfy the requirement
of robot grasping control. Note that, in our implementation,
the line search process is performed using golden section
search, which allows us to get an accurate result with real-time
searching performance. The overall frame rate of the current
vision system is about 25 frames per second for a full-color

video stream with image size of 640 × 480 pixels. More exper-
imental results of the orientation estimation testing can be seen
online [30].

Remark 3: To study the robustness of the proposed ori-
entation estimation algorithm, we conduct an experiment to
test the proposed method working without the restriction of
Assumption (A1) mentioned in Section II-C. From the exper-
imental results, the proposed method provides some degree
of robustness against Assumption (A1) when the magnitude
of angle uncertainty is small enough (i.e., smaller than 10◦

in our testing). Moreover, the proposed method also shows
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TABLE V
PARAMETER SETTINGS FOR EACH REACTIVE FUNCTION UTILIZED IN THE EXPERIMENTS

Fig. 12. Experimental results of visual grasping a cubic object using the ideal reactive function defined in (6). (a) Trajectory of the target center position in the
image plane. (b) Zoom-in of the trajectory around the reference point in the image plane. (c) and (d) Recorded image position errors and orientation error defined
in (8) and (9), respectively. (e) and (f) Recorded reactive motion velocities and reactive angular velocity computed using (8) and (9), respectively.

the robustness against perspective projection distortion. These
properties greatly increase the applicability of the proposed
method in practical applications. Interested readers can refer to
[30] for more details.

B. Visual Grasping a Cubic Object Using the Proposed Visual
Servo Controller

Table V tabulates the parameter settings for each reactive
function utilized in the experiments. The value of the param-
eters emax and smax of each reactive function is empirically
tested to ensure that the motors are far from their respective
limits until a certain motion velocity of the end-effector. To
evaluate the robustness of the proposed hardware-aware reac-
tive function overcoming system quantization uncertainty, we
first compared the experimental results of using the ideal and
hardware-aware reactive functions. Fig. 12 shows the exper-
imental results obtained by using the ideal reactive function
defined in (6). One can see from Fig. 12(a) and (b) that the
target center position cannot converge to the desired image

position Xi
ref = [320, 320]T . This problem is mainly caused

by the quantization error in hardware motion controller, which
truncates the control commands to zero when the reactive
motion and angular velocities converge to small nonzero values
[see Fig. 12(e) and (f)]. Consequently, all error states (ei[k] =
[eix[k] e

i
y[k]]

T and ewθ [k]) cannot converge to zero, as shown in
Fig. 12(c) and (d).

To overcome the performance degradation caused by hard-
ware limitations, we repeated then the experiment with adopt-
ing the hardware-aware reactive function (7) instead of the
ideal one. Fig. 13 presents the experimental results, which
shows that the target center position converges to the de-
sired position efficiently [see Fig. 13(a) and (b)]. This re-
sult also can be observed from Fig. 13(c) and (d) that each
error state converges to zero as desired. Consequently, the
reactive motion and angular velocities converge to zero, as
shown in Fig. 13(e) and (f). This experiment validates the
robustness of the proposed hardware-aware reactive function
overcoming the system quantization uncertainty as we ex-
pected. Note that any smoothly increasing and continuously
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Fig. 13. Experimental results of visual grasping a cubic object using the hardware-aware reactive function defined in (7). (a) Trajectory of the target center
position in the image plane. (b) Zoom-in of the trajectory around the reference point in the image plane. (c) and (d) Recorded image position errors and orientation
error defined in (8) and (9), respectively. (e) and (f) Recorded reactive motion velocities and reactive angular velocity computed using (8) and (9), respectively.

differentiable reactive function satisfying BIBO condition can
be combined with the proposed reactive-based control scheme.
Interested readers can also refer to [28] for more experimental
results of the proposed hybrid switched reactive-based visual
servoing method.

Remark 4: Although the existing method [25] is also able
to overcome the system quantization error with improved con-
vergence performance, this method requires a precise system
dynamics model to derive the robust control laws. This require-
ment is difficult to meet when dealing with a complex dynamic
system, such as the 5-DOF manipulator considered in this study.
By contrast, the proposed reactive-based control method does
not require the dynamics model of the physical system. This is
the merit of the proposed visual servo control system.

Remark 5: The main difference between the proposed and
classical IBVS methods is that the classical IBVS method
requires at least three image features to determine each joint
angle velocity of a 5-DOF robot manipulator. However, when
the robot picks a cube object, the position of image features
of the object may be distorted by the perspective projection
distortion [30]. This problem may decrease the convergence
performance of the classical IBVS method. By contrast, the
proposed method requires only one image feature (the central
point of the object) to determine the joint angle velocities. This
advantage helps to improve the robustness of the visual servo
control system against the perspective projection distortion.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a novel hybrid switched reactive-
based visual servo control design for a 5-DOF robot manip-
ulator to perform object pick-and-place tasks. The proposed
hybrid switched visual servo controller consists of image-
and position-based visual servoing approaches to handle

object picking and placing operations, respectively. To assist
the task of grasping a cubic object, a novel image-based object
orientation estimation algorithm that accurately estimates the
orientation of the object with real-time performance is pro-
posed. The proposed orientation estimation method also can
be extended to estimate the orientation of a geometric object
from vision information only. To compute the desired end-
effector velocities in world coordinate, a novel reactive function
approach is proposed to directly map the image position errors
to desired end-effector velocities without inverse interaction
matrix computing, fuzzy modeling, and fuzzy-rule base learn-
ing. This feature helps to simplifying the design of the visual
servo controller. Moreover, the proposed reactive function is
hardware aware to improve the reliability and applicability
of the proposed controller in practical applications. Experi-
mental results validate the picking and placing performance
of the proposed hybrid switched reactive-based visual servo
controller.

In future work, several issues in the proposed visual servoing
and orientation estimation schemes can be further investigated.
As to the visual servoing studies, we would like to search
the optimal reactive functions for the proposed control method
based on a performance criterion in order to increase con-
vergence rate and improve tracking performance of the visual
servo control system. Moreover, a stability analysis also needs
to be completed to justify the stability of the proposed control
system. On the other hand, we try to expand the proposed
orientation estimation algorithm to work with more geometric
shapes and without the restriction of having the camera axis
perpendicular to the object plane. By doing so, a complexity
control strategy combining with a vision-based grasp planning
process is possible to be developed, tested, and compared with
other methods, allowing extending the robot to deal with more
complex scenarios with much more interest.
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